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Abstract

. - The emphasis is on development of likelihood ratios and detection

algorithms for problems involving nonGaussian data. The first problem

considered is that of detecting a nonGaussian signal in Gaussian

noise. This frequently arises in active sonar; it could also be

important for passive sonar. General results are presented on non-
singular detection and likelihood ratio A recursive discrete-time

detection algorithm is obtained and is shown to be a likelihood ratio

detector when the signal-plus-noise is Gaussian.

The second major problem considered is that of detecting a signal

in spherically-invariant noise (SIN). This is a model which has been

proposed for some impulsive-plus-Gaussian environments, and is closely

linked to detection problems encountered in some active sonar appli-
cations. General results on nonsingular detection and likelihood ratio

are first obtained. For detection of a known signal, the behavior of

the discrete-time likelihood ratio is analyzed as the sample size

- increases. Constant-false-alarm-probability detectors are given, and

. n example based on sonar data illustrates the potential loss due to

using a Gaussian model when the noise is actually nonGaussian SIN....'
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LIKELIHOOD RATIOS AND SIGNAL DETECTION

FOR NONGAUSSIAN PROCESSES

1. INTRODUCTION

NonGaussian signal detection problems arise in several

applications of underwater acoustics. NonGaussian signal processes

occur for active sonar when the reflecting target (with surface

undergoing random motions) has only a few dominating scatterers. The

noise in such applications is frequently Gaussian, so that the

detection problem is that of detecting a nonGaussian signal embedded

in additive Gaussian noise.

Problems of detecting a signal in nonGaussian noise also arise;

for example, for sonars operating under ice. Noise due to

ice-cracking, creaking, floe-smashing, etc., contributes a component

which has been found to have substantial nonGaussian behavior [6]. In

addition, active sonars operating under ice near the surface may

encounter a nonGaussian component due to specular reflection from the

- irregular under-ice surface. Another environmental situation which may

. produce nonGaussian noise is shallow-water reverberation.

Optimum detection algorithms require knowledge of the statistical

properties of data processes. For applications involving nonGaussian

noise with a strong impulsive component, a useful univariate noise

. model has been developed by Middleton [12]. Much remains to be done

*: in this area. Development of optimum detection algorithms requires

*g knowledge of multivariate statistical models for both the noise and

the signal-plus-noise processes. At present, such models do not exist

for some of the most important nonGaussian environments. Their

development will require a mix of physics, mathematics, statistics,

and extensive computational investigations. These are challenging

problems whose solution must be obtained before one can obtain optimum

detection algorithms.

This contribution first considers algorithms for the detection of

* nonCaussian signals in Gaussian noise. Results are summarized for the

continuous-time problem; more attention is given to discrete-time

approximations. A discrete-tim , recursive algorithm is given. It is

shown that (under appropriate assumptions) this discrete-time algor-

ithm is a likelihood ratio detector if the signal-plus-noise process

:: '-: -: :-' " -" -: .,. " :- ,: -:'.: " .:- " - .: ": " "' ": "- :- -.' -: : ': • :'" " :. ::- : . :- '% '-:' ::- i --.-' . --. i-. :-'-. ,7



is Gaussian. Attention is then turned to signal detection for problems

involving nonGaussian spherically-invariant noise (SIN). The uni-

variate Class A model of Middleton [12] is seen to be a special case

of SIN. The likelihood ratio for detection of a signal in SIN is

derived for both continuous-time and discrete-time applications.

Approximations, including constant false-alarm probability (CFAP)

detectors, are discussed. The effect of sample size is also

considered. These results indicate tiat robust detection can be

achieved for detection of known signals in spherically-invariant

noise. In applying these results to Middleton's Class A model, it is

shown that placing that model in the context of SIN provides a number

of useful consequences.

All stochastic processes to be discussed are real-valued and

defined on a probability space (02, 0, P). For processes in continuous

time, the parameter set is [OT]. and all such processes are assumed

to be mean-square continuous. All noise processes are assumed to have

zero mean. (V(t)) will denote a stochastic process, while V(t) will

denote the random variable obtained by sampling the process at the

time t. The argument W in Q will typically be suppressed:

V(t) a V(t,u). V2 [O,T] is the linear space of all Lebesgue-square-

integrable functions on [O,T]. L2 [O,T] is the set of equivalence

classes [u] obtained from functions u in e2 [O,T]. For a noise process

(N(t)), rN will denote the covariance function: rN(t.s) = E N(t)N(s).

RN will denote the covariance operator of (N(t)); that is, the

integral operator in L2 [O,T] having rN as its kernel. R will be

assumed strictly positive; (Xn) is the sequence of (strictly positive)
n

eigenvalues of RN. with (en) corresponding c.o.n. eigenvectors.

<uv>= f u(t)v(t)dt for u and v in L 2 [O,T]. The signal-plus-noise
0

process at time t will be Y(t) = S(t) + N(t). In the continuous-time

case, the likelihood ratio sought is on L2 [OT]: dpy/dN, where

(resp., pN) is the probability on L2 [O,T] induced by the stochastic

process (Y(t)) (resp., (N(t))).

For a noise (N(t)) with covariance function r N' H N will denote

the reproducing kernel Hilbert space HN of r As is well-known, there

is an isometry between HN and range(R'): the element u is in 1N if and

only if there exists a unique element [u] in r.nne(R,) generated by u.

The inner product of two elements u and v in If is given by

[u'v N = < <[u],en><[v].e >/A . Since rN is taken to be continuous,
n>l

.. .. .
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the elements of HN will be continuous functions. It can also be noted

Ni', " . , that range(R ) is a real separable Htilbert space under the above inner

product (i.e., with respect to the inner product ([u],[v])N = [u'v]N).

For simplicity, the element [u] in L2 [O.T] will usually be written

simply as u.

For observations x in n-dimensional Euclidean space En the noise

covariance matrix will be assumed strictly positive. A* is the

transpose of the matrix A. For a bounded linear operator A in L2 T],

A* will denote the adjoint.

In discussing existence of likelihood ratios for continuous-time

processes, it is necessary to introduce more mathematical structure.

" • Thus, let (X(t)), t in [OT] be a m.s. continuous stochastic process.

.{X s<t} is the u-field generated by {X s, s<t); _t(X) is the filtra-

0tion consisting of all the a-fields u{X . s<t'} for 0 < t' < t. a (x)

0will denote aT(X). E (X) (resp. , (X)) will denote the filtration
-t

o 0generated by u (X) (resp., a (X)) and all sets of P-measure zero, com-
-t

pleted with respect to the underlying probability P. If (X(t)) and

(V(t)) are two such processes, then at (V) v t(X) will denote the

smallest filtration containing both o (V) and u (X), with .(V) v a(X)
-t -t

similarly defined.

The continuous-time problems considered here will be modeled in

1.2 [OT]. Somewhat similar results can be obtained by considering the

probabilities induced on R[O.T] the real-valued functions on [O.T]

However, those results [5] are not so complete as those for L2 [O T].

7or 1t and "N probabilities on the Borel sets of L 2 [O T].

p << 4N denotes absolute continuity of py with respect to PN (so that

the likelihood ratio dhiy/dN exists). 1y i pjN denotes orthogonal

probability measures; in detection applications, orthogonal measures

imply singular (perfect) detection. y 11N denotes mutual absolute

continuity: Pay << 11N  and itN << PY' PD will denote probability of

detect ion = probability of correctly deciding signal present. P
FA

denotes probability of false alarm probability of incorrectly

decidin g signal present. P 0 implies P 0 if << P =1

implies FtA = 1 if <( . Thus , A N  +N - N is the situation

-.-,si :Illy assumed to hold for practical problems in signal detection. We

Sefer to this as non-singular detection.

Treatment of the continuous-time case introduces substantial

complication into the analysis. However, it clarifies st ructlire,
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enables one to obtain discrete-time finite-sample algorithms as

• .approximations. and provides valuable performance bounds.

2. DETECTION OF NONGAUSSIAN SIGNALS IN GAUSSIAN NOISE

-"" An important active sonar application is the detection of

*2
" 
.nonGaussian signals embedded in additive Gaussian noise. For example,

when the noise background is reverberation-limited, the scatterers

giving rise to the reverberation can frequently be assumed to be

statistically-independent in their reflecting properties. Application

of the central limit theorem then gives a Gaussian process for the

reverberation process. However, if the target return is primarily due

to reflections from a few random scatterers (each contributing random

phase and amplitude), then the composite reflection from the target

will generally be nonGaussian. In this particular application, the

signal and noise processes are dependent, and the noise process is

nonstationary.

Other applications may also involve detection of nonGaussian

signals in Gaussian noise. For example, in passive sonar the

bacground noise can frequently be assumed to be Gaussian and

-.. stationary. However, signal sources such as ship-radiated noise need

not be Gaussian.

Full solution of such problems ideally includes determining con-

01 ditions for nonsingular detection, and then (when nonsingular

detection holds) determining the likelihood ratio.

If the signal-plus-noise process is also Gaussian, then

conditions for nonsingular detection and the form of the likelihood

.04ratio are well known [4, 14]. If the signal is nonGaussian and

independent of the noise, then sufficient conditions for nonsingular

detection are given in [3]. With the noise Gaussian. the sufficient

condition is that the sample paths of the signal process belong (w.p.

1) to H the reproducing kernel Hilbert space of the noise. Under
N'

mild assumptions, an expression for the likelihood ratio can also be

obtained from the results of [3].

If nothing is known about the signal-plus-noise process except

its covariance and mean functions, then of course a likelihood ratio

detector cannot be determined. However, if one limits consideration to

quadratic-linear operations on the data (in forming a test statistic).

then the deflection criterion can be used to determine the optimum

operation. That is, let T be the class of al admissible test

,', ' .i . . * - - ---,. . .. 2 . . ,-,:S r..',- . " " . . . - ,-. • -.- ..- ,. , - .- ,' - ',. a . _,',.'
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statistics T. The deflection of T is then Do,(T)

2 2 2
= (ENT(X) - ES+NT(x)) /(ENT (x) - [ENT(X)]2), where EN() (resp.

ES+N(-)) denotes expectation w.r.t. the noise (resp., signal-plus-

noise). The problem then consists of determining supT DOl(T) , and

determining a T achieving this supremum or a sequence (Tn) converging

to the supremum. The optimum quadratic operation for discrete-time

finite-sample data is given in [1], while [2] contains the solution

for the infinite-dimensional case and results linking deflection to

nonsingular detection.

The results on deflection given in [1] and [2] apply to problems

where the signal-plus-noise process is neither Gaussian nor consisting

of thL noise plus an independent signal process. For such problems, it

is desirable to have general conditions for nonsingular detection and

"also expressions for the likelihood ratio. Currently-available data

*- models may be inadequate to fully utilize such results, but their

aivailability for future use is clearly desirable. Results for the

-pecial continuous-time case when the noise is the Wiener process have

been known for many years [11]. However, the Wiener process has

properties that are not observed in practical sonar problems: sample

functions that are almost surely nondifferentiable at almost all time

( ints. the Markov property, and the martingale property. Thus, the

design of future optimum signal detection systems requires results

beyond those already mentioned; such results have recently been

* obtained [5].

The results contained in [5] include general conditions for

nonsingular detection of a possibly nonGaussian signal imbedded in

additive Gaussian noise. The work is based on the spectral

representation of second-order stochastic processes, particularly as

developed by Hida [10]. The general problem is that of discriminating

between a Gaussian noise process (N(t)). t in [0,T] and a possibly

" nonCaussian process (Y(t)), t in [0,T].

The basic assumptions made in [5] are the following:

(A.2-1) (N(t)) vanishes almost surely at t = 0;

(A.2-2) (N(t)) has a purely-continuous spectral representation of

multiplicity M < .

Assumption (A.2-2) is equivalent to (N(t)) having a repre-

senatat ion of the form

Mt..,'t

N(t) = ' (ts)dBi(s) (2.1)"- .ii I 0 i

where (B (t)): i<M, t in [O,T]} is a family of independent-increment

.,. .. .- ...



0.

mutually-independent path-continuous zero-mean Gaussian processes, and

each F. is a Borel-measurable function on [0,T]x[O.T] with F.(t's) = 0
I 1

for s>t. This representation also satisfies

5 F2(t,s)di3(s)dt (, where 1i is the Borel measure on [0,T]
1 i 0 0

defined by the non-decreasing variance of (B.(t)):
1

2 2
13.(a,b] =EB.i(b) - EB.i(a)-

The representation (2-1) is taken to be the proper canonical

representation for (N(t)) [10]. One consequence is that the completion

of the a-field a{Bi(s): i<M, s~t} is the same as the completion of

a{N(s): s~t} for each t in [0,T]. In general, the equality (2-1) holds

almost surely dP for each fixed t in [O,T]; by assuming that (N(t)) is

separable w.r.t. closed sets, one obtains a.s. path equality.

The basic results on non-singular detection of a possibly

nonGaussian signal embedded in additive Gaussian noise, as given in

[5]. entail both a set of sufficient conditions [5, Theorem 2] and a

set of necessary conditions [5, Theorem 3]. The sufficient conditions

for absolute continuity on L2 [OT] are given in the following result.

Pror. 2.1 [5, Theorem 3] Let (V(t)) be a stochastic process indepen-

dent of (N(t)). Suppose that (S(t)) is a stochastic process adapted to

((N) v a(V) and with paths a.s. in HN .  If Y(t) = S(t) + N(t) a.e.

dtdP, then py << PN '

Both the sufficient conditions and the necessary conditions

include the requirement that the signal process have a representation

with almost all paths in the reproducing kernel Hilbert space of the

noise covariance function rN. With the representation (2-1), this

means that almost all sample functions of the signal process have a

representation of the form

M
S(t) = F tF.(t.s)Q (s)dPi(s) (2-2)

i=l 0 1 1 1

where (Qi(t)) is a stochastic process with almost all paths in I

ST 2
Q.(s)d(3.(s) <K a.s. dP. The remaining conditions f or absolIiite

continuity embody measurability conditions on the signal process.

Ihese conditions are given in terms of the noise process (N(t)) ind a

stochastic process (V(t)) independent of the noise. Th e" arev

essentially related to the signal process being a causal functional of

.Pi the two processes (N(t)) and (V(t)). The basic idea is that the signal
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may be a causal functional of both the noise process (as in the case

of dependent signal and noise) and an independent "message" process.

The likelihood ratio dIs+N/d AN for this problem is given in [5.

Theorem 7]. Define a vector stochastic process (Z(t)) by

Z.(t) = t Q (s)dP3(s) + Bi(t) (2-3)
0

* where the processes (Qi(t)) are those appearing in (2-2) above. Then

M
S(t) + N(t) = 2 ft  F (ts)dZ (s) (2-4)i'"'o i ' i

The vector processes (Z(t)) and (B(t)) define probabilities P and P
B Z

on the space of all M-component vector functions on [0,T] whose

component functions are all continuous. Under the conditions for

existence of dpS+N/dWI dP z/dP B  will also exist, and for an

observation x in L2 [OT],

[dps+N/dpI](x) = [dPZ/dPB]( [x])(2-5)

i.e. d PN(x). m(x) is an M-component vector of continuous functions,

defined by

m.[x](t) E <xe ><f e >/X (2-6)
1 n~l n t n n'

ft1( S )  f= Fi(s~u)dPiu )

0

| The likelihood ratio dPz/dPw of (2-5) has some explicit known

representations [11]. depending on the properties of (Z(t)). These

representations are based on the fact that each (Bi(t)) is a path-

continuous Gaussian martingale.

The results given above are for continuous-time observations. In

sonar applications, it is desirable to have discrete-time recursive

algorithms, which do not require complete recomputation of the test

statistic each time a new data point is received. Moreover, it is

desirable to have an algorithm with parameters that can be estimated

from data, since a complete data model wi l I not usual ly be avai lable.

Such an algori thm wil I now be derived. I t wil1 1 be bised on the

following additional assumptions:

. .•
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(A.2-3) The noise process has multiplicity M=l, and the process

(Bl(t)) is the standard Wiener process (W(t)); thus

N(t) = ft F(t,s)dW(s), where F is a Volterra kernel withf0

4 T ,T F2

f0  jF (t,s)dsdt 
<

i.-. .. (A.2-4) The process (Z(t)) defined in (2-3) is a diffusion with

(A. 2-s a d f us o i

respect to the Wiener process and has memoryless drift

function, so that Z(t) = ft a[Z(s)]ds + W(t). (2-7)
0

" - The assumption (A.2-3) is reasonable from several viewpoints,

such as the fact that multiplicity-one processes are dense (by a

mean-square distance criterion) in the spake of all second-order

processes, and that any Gaussian vector can be represented as the

result of a lower-triangular matrix operating on white Gaussian noise.

One can also show that the assumption (A.2-3) is satisfied whenever

the noise process has a proper canonical representation
et n

N(t) = F(t,s)dB(s), where the variance of (B(t)) is an absolutely
f0

continuous function on [0,T].

1The assumption (A.2-4) is less tenable; it is made primarily for

computational convenience (which is in fact not very convenient, even

so) when the signal-plus-noise statistics are unknown. lt does permit

. one to consider a very large class of signal-plus-noise processes

without having complete knowledge of the statistics. Of course, if a

complete mathematical model is available, the assumptions (A.2-3) and

(A.2-4) need not be made (if dP z/dP B can be determined).

For the detection problem as defined above, the general form

61 (under a mild restriction) of the likelihood ratio is

[di+ /dI X = lim exp [A (x)]
n

where 0 n n < t n  < . n = T is a part i t ion of [OT] such
0 1 2 n

that sup tn - n 0.,. ., - - ,1

n-I,'-,n~ )= rm x(n  n TI
A (x) .. (m[x]( t ))(m[x](t + 1 ) - m[x](ti )

~i=O

-. 1 /2-n- 1 2 [x](n ( t + n-~2'ii! 1/2 ) (7 (mix ]( ) ( t-- t )
i --()ii li '

hO-,d 1e limit exi st in the norm of 1I N

0 4 - ~ ' , . . " .. . - ""- " - -
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P~ml'- t F(t s)dW(s) yields that
The representation of (N(t)) by N = F

RN = FF., where F is the integral operator with F(t.s) as its kernel.

and F* is its adjoint. This can be used to provide an expression for

the function m appearing in (2-5) and (2-6) that does not require

calculation of eigenvalues and eigenvectors.

First, notice that <e.,f > = IT ft F(s,u)du ej(s)ds_ t J 0  0

= t 7T F(s.u)ej(s)dsdu [LF*ej](t), where [Lf](t) a f(v)dv. Using

this, the expression (2-6) for m can be rewritten as

k -
m[x](t) = lim [LF4 ) <e.,x> R e.](t)

= lim [LF*RN'Px](t)k- k

where P k x is the projection of the function x on the subspace spanned

by e , ek. Since R. F*-F -
, the preceding becomes m[x](t)

k N

= lim [LF Pkx](t).
k-)o

A basic difficulty is that (with probability one [3]) the

observation x will not be in the domain of the operator F , so that

F-1 x is not defined. In fact, LF 1 will in general not be a bounded

linear operator. However, for almost all sample functions x (either

from noise or signal-plus-noise), m[x](-) is a continuous function of

t. Thus the map m is a linear operator from L2 [O,T] into C[O.T] whose

domain includes (with probability one) all sample functions of the

noise and signal-plus-noise processes.

The difficulty in implementation of the likelihood ratio (2-8)

will lie in determining the function c and linear operator m. a is a

parameter of the signal-plus-noise process, and its estimation is a

"'\ problem of considerable interest in stochastic processes (as the drift

of a diffusion) and in stochastic filtering. The possibly unbounded

,.-. linear operator m, mapping L2 [OT] into C[O,T]. depends only on the

,.-- covariance function of the noise. If the noise covariance function is

known, then the preceding expressions can be used to obtain a

discrete-time finite-sample approximation to the likelihood ratio.

Here we consider such approximations when one knows only the

covariance matrix of the noise.

Let R denote the covariance matrix of the noise; one can write9. -N
R N F F* where the matrix F is lower triangular. Now, the expression

• %.- .[.



for m given above is of the form
-1 lo

m[x](t) = lim [LF Pk0](t).
k- w

where RN = FF*, L is the integration operator, and Pk is the

projection of x onto the subspace spanned by {e I . . . . . .ek' where

- {e n>l} are o.n. eigenvectors of R Thus, a reasonable procedure is
n

..simply to replace this expression by m[x] = L F x, where x is the

observed data vector, and L is the summation operator in Ek

(L x). . x.
i=l

There is a fundamental difference between the above approximation

to m and the exact result. As previously mentioned, Flx is (with

probability one) not defined for the continuous-time situation; here,

of course, there is no such problem for F x.

Implementation of the discrete-time algorithm for a fixed sam-

. pling interval. A. will now be considered. Then, when the observation

" . is an n-component vector, and the above approximation is used, one

_. obtains as an approximation to the log-likelihood ratio the expression

n-i
An(x) = (u[(L F x)j])[(L F-II - (L E X)]

j=O

n-1 2 1I- (A/2) n C [(L E )X] (2-9)

j=O

n-1 n-l 2 1
:E (a[(L F-x ) ])[( 1 x). ] - (/2 E x) I.

= jj1j=O

If now a new data point x is observed, the approximation has the,: n+ 1

recursive form

A n+(x) An(2) + c[(L F-X) ](F X) -(A/2) a [(L 1 X) (2-10)
-n n+l n

One notes the following:

(1) Implementation and calculation of A require the following

operations. First, the function a must be known and pro-

grammed. Given the value of An(n) and the observation

n"= .xn). one stores An(Xn). x a[(L E _ ], and

(L F x n . When the data point xn+l is received, it is only

. . . ... .. . . . . . . . . . . . . . . . . . . . . .... .-. . . . .......... . . . *



n+l -1 n+l
necessary to use x to calculate (Fx )n+l' which means

Iv- ,'-n+l1
to cross-correlate the observation x with the n+l row of

-1 n+1 n+l
F This number, say b+1' is then used to form A O ,

:- n n
n+l n+l n(n +a 2n
A-(x. ) = An( n) + [, bi]bn+i - (A/2) o [ bi].

1 1
This is much simpler than a procedure whereby the function

m =L F_ is expressed in terms o f i ts eigenvalues and

eigenfunctions, since those quantities would have to be

n
stored for E and all the sample indices n > 1, and a com-

plete new calculation done for each new sample point

observed.

(2) As already noted, the expression An(xn) can only be

considered as an approximation to the discrete-time

likelihood ratio. This approximation becomes more valid as n

increases, since it amounts to representing the noise vector
-_. i-l

,- by N = 7 F ij(AW)j, where AW is a vector of i.i.d.
j=l j

i-i
N(OA) random variables. As n increases, 2 F(iA, jA)(AW).

.1=1
will converge in mean-square to N(iA) = N(t), keeping

iA = t, where the function F is that appearing in the

representation N = ft F(ts)dW. Thus, as n increases, the
0

i-1
-{ .representation of N by N(t) = " F..(AW). converges to the

j=l iJ3 .
. _ representation satisfying the original continuous-time

@ models for noise and signal-plus-noise.

(3) a can be estimated from a sample of data representative of

signal-plus-noise. In discrete time, the procedure is as

• follows, given an observed S+N vector X.

-1
a) Form AZ = F X, where RN =FEF_, F lower-triangular,

(AZ) = Z(iA) - Z([i-l]A), Z0  0.

i-1
b) Z(iA) = A I a(ZjA) + W(iA).

6j=l

- Given the sample vector Z obtained from b), the function i can be

estimated. A maximum-likelihood procedure is given in [8].

SOf course, the approximations (2-8) and (2-9) need not be

likelihood ratios for a fixed finite set of sample points. However, it
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will now be shown that (2-9) is a likelihood ratio when the function a

is linear. In this case, S+N is Gaussian, so that the likelihood ratio

dpi S+N /dji N can be found.

In accord with the model for (Z(t)), the discrete-time represen-

tation is (for a linear)

k
Z =A I a.Z. +W (2-11)
k+ 1 j=l i k+1*

n
It will be shown that for an observation vector x in E

)2L/21  (A2 a~x. + a.x.(x.1 -X) (2-12)
z= i i1l

The LHS of (2-12) is the log-likelihood ratio (within a constant) of

dP /dP Given the equality (2-12), if one has that N =F AW,
Z W* _

S+N =F AZ, then [djis /d N (2) z[dPA/d PAW(F 1 x

CThus le t

k
Zk = A .2 a.Z. + W k~l,

Jkll k+1'

Let A be the matrix diag[a . . . an] The RHS of (2-9), evaluated at

y. F L x, then becomes

* n-i n-i 21.2x. (Ax ( A:E (Ax).l
j=l j=l

To show that (2-9) is a likelihood ratio test statistic, it will first

-1 -1
be shown that (2-13) is equal to - x*4(R zRW )?L/2 =log [dPZ/dPWl(xL)

+ constant.

The above representation for Z. gives

(I + AA)Z = AL A Z + W

so Z =B W

B = I + AA - AL A.

Z t hus has covariance matrix R =BR B~,so R - I*R B Since
_ z - -W -Z _-w-

Ywi.j) =Amin(i~j), RW = ALL*. and thus

R1 (1 + AA - AA L**L(I+ AA -Al, A)/A

where (L )i I if i=j

= -1 if i=,j+s1

=0 otherwise.
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Fhis gives R - R
-1""1 1 -1 L k- AL(A -1( )L-1 2

. [AAI* L A + AL* L + L - L A -AL (I+AA) (I+AA)L* A + AA2]

and for a data vector x.

"w(Rz)x = A(L Ax)*L- Ax + 2(L x)*L- Ax

- 2(L x)*Ax - 2A(L Ax)*Ax + A(Ax)*Ax.

2 2
The three terms containing A sum to A E a.x., while the other two

i=l 1 1

n-I
terms sum to -2 a.x (x -xi), so that

i i i+1 =

- -1 n-1 ni 2 2
x:*(Rz Rw = -2 7 a x (x. -x ) + A 2 a.x.. as desired.

j=l j  j+l j j=l

This shows that (2-9), evaluated at y = F L - x, satisfies

A(F L-x) = - x (Rz - Rw1)x/2 = log [dPz/dPw](X) + constant. More-A-'l (E L) X) [d z/ w ( R I ?/ o d

over, [dp S+N/d NI](yj) [dPAZ/dPAW](F Y- ) = dP/dPW](L L y), the last__ ) th Nlast_

equality because AZ = L Z, AW = 1L W. With = F L - l
.

[dl /dpN](y) = [dPz/dPw](2) = (from above) exp[A n(y) + constant].

Thus, when the above assumptions are satisfied (including the

assumption that Z is a Gaussian vector), the approximation given in

(2-9) is a discrete-time finite-sample likelihood ratio.

3. SPHERICALLY-INVARIANT NOISE (SIN) MODELS

Let (N(t)). t in T, be a real-valued zero-mean stochastic process

on a probability space (Q.3,P). N is said to be spherically invariant

if it has the representation N(t) = AG(t) for each t in T. where C is

a aussian process and A is a random variable which is independent of

G and which has finite second moment. Since it can be assumed that

2EA-= 1. the covariance of N can be taken to be the same as that of G.

Thus, the finite-dimensional distributions of N are completely

determined by its covariance and by the distribution of the random

variable A. SIN can thus be viewed as a first step away from Gaussian

noise.

If the random variable A is discrete, then the distribution of

the random vector (N(t 1 )......N(t r ) is given by the density function

A ... f.n.t.o.
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K
f(N) = p Pin(O,a.R) (3-1)

i=l 11

where n(a.B) is the density of a Gaussian random vector (in Er) with

mean a and covariance matrix B. In the representation (3-1),

P[A=a.] = pi, and K < - is the number of distinct values that A

assumes with positive probability. In this paper, it will be assumed

throughout that A is a discrete random variable. We also assume (WLOG)

that EA 2 = 1 and that A is strictly positive.

The model for univariate impulsive-plus-Gaussian noise developed

by Middleton [12] takes two basic forms, defined as Class A and Class

B, depending on the relative bandwidth of noise and receiver. The

Class A model is defined to exist when the impulsive noise pulses do

not cause transients in the front end of the receiver; it is thus a

model for narrowband noise. The univariate density function as

developed by Middleton has the form [12]_U Um 2 2 :-U {- x2/aJ(-
f(x) =e a m exp 2 2 (3-2)

m=O m 2r m

where U is the "overlap index" and (a ) is a sequence of variance
m

components. The overlap index is defined to be the average number of

.- arrivals per second multiplied by the average length of the pulse. The

2 2 -1
variance component a is defined by a = (mU + F)/(l + F). where Fm m

d is the ratio of the intensities of the Gaussian and non-Gaussian

components of the noise.

It can be seen that (3-2) is the probability distribution of a

' spherically-invariant random variable X = AY, where Y is a zero-mean

a :unit-variance Gaussian r.v. and A is an independent r.v. taking the

values (a ) with

=. P[A=a] eU/m! (3-3)',' ] = U m  e

In fact, E A = - (E + F)/(l+F) 1.

In [16], Spaulding and Middleton analyse the problem of detecting

a known signal in Class A noise by assuming independent sampling, so

that the sampled noise data has joint density function (n samples)

2n. x.i

POO IT P exp -(3-4)"i=l M=O m 2-r a 2a 2

1 mm m
h in

I/

S. . . . . . . . .- . . . . .- -- - - - - -
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However, if the r.v. A is constant over the sampling interval, then

the density of X = AY, where the components of Y are i.i.d. N(O,1). is

PO= Pmr 2n/2 exp 2 (3-5)
m=O L2 7 am  L m

'.- nIl ll

. where 1xll 2 x2 When the Gaussian process Y has non-singular
'-' i=Il

covariance matrix R, then the class A noise has joint density (if the

r.v. A is cons'ant over the observation interval)

p(x- p exp[-2 x*R x/aJ (3-6)-7 p~x) v pm [ 2]n/2 (d e t  ) - _
.m=O m 27r am I

. As will be shown in the next section, for reasonably large n it

is not necessary to know the values of U and r in order to implement

this detector. This fact, as well as the joint density (3-6),

* illustrates some of the advantages of using a general SIN model

whenever appropriate.

Of course, SIN models are not limited to the Middleton model.

They cover a large family of smooth unimodal densities that are

symmetric about their mean. NonGaussian examples of spherically-

invriant distributions include the t and double-exponential [9].

,t. DETECTION IN SPHERICALLY-INVARIANT NOISE (SIN)

4
In this section, (N(t)) will be SIN with representation (AG(t)).

(G(t)) is a m.s. continuous zero-mean Gaussian process and A is a

strictly-positive discrete random variable independent of (G(t)) and

2
with EA = 1. (N(t)) thus has zero mean and covariance the same as the

covariance of (G(t)). A takes on the value a. with probability p.>O.

Likelihood ratio detection of a known signal in SIN has

previously been considered by Yao [18] for a very special case: the

4 threshold on the likelihood ratio test statistic is unity. It has also

been considered by Spooner [17] for a specific distribution of the

mixing random variable A. A more comprehensive treatment has been

4iven by Picinbono and Vezzosi [13]. Their work, and that of Spooner

4 and Yao. has been for the discrete-time finite-sample-size problem.

However, these authors all use or permit continuous mixing r.v. 's A.

Our choice of a discrete r.v. for A permits analysis of the continuous

time problem without introducing much mathematical complication. It is

also sufficient to apply our results to detection in Middleton's Class

' :_i _. ;:, : :i5 1 .,*, , :". .* ._. -:: . , , . ." . . .
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A noise.

The first topic to be addressed here is that of absolute

continuity and likelihood ratio. Sufficient conditions are contained

in the following result.

Prop. 4.1. Suppose that (Y(t)) is a stochastic process adapted to

a(G) v a(V), where (V(t)) is any process independent of (N(t)).

Suppose also that Y(t) = S(t) + N(t) a.e. dtdP, where (S(t)) is a

stochastic process adapted to c(Y) and with almost all paths in HN.

Then py << 1 N" Moreover, S+aG < 1 aG for all a>O, and

N: N [d s+N/dPN] (x) = i I ( x)() [dWS +a  /dpa G](x) (4-1)

a.e. dIN(x). In (4-1), the sum is over all a. such that P[A=a.] > 0.

IC is the indicator function for the set C in L2 [O,T], and

n
C(a.) = {x: lim 1 2 <x,e.> 2/X. = a.21n 3 ,] 1

n j=1

Moreover, if (S(t)) is any process such that P[A=ai] > 0 implies
"PS+a.G < < 1a.G' then A S+N << AN and d IS+N /dAN has the representation

-".-.Proof. If (Y t) is adapted to cr(C) v a(V), then (Y t) is adapted to

-- (aG) v u(V) for any constant a. Since ItN = HC = HaG IS+aG << PaG for

any positive constant a, by Theorem 3 of [5]. Then for any Borel set B

.. o f L2 O '1 '

.S+N(B) G. (B) =, p. [d iC/dP ] (x) dpPi.B i2iPiWS+a. P ds+ a Gd a G x ~ ()

n
2 2Now, lim n 2 <x,e.> /X= a. w.p.1 when A = a. under both -N andn 1 1'

n--g j=l
I To see this for AN (noise-only data), one notes that the random

variable <x,e.>/X' has the form a.<G.e.>/X when only noise is present

and A = a.. The random variables {<G,e.>/kX2: j~l} are i.i.d. N(0,1).

n2
Thus, by the law of large numbers, - <Ge.> /X. I 1 with probabilityn 1

In 2/ 2one. When A=a., 1 n <N 2e > . a a w2 p. (PN). If signal is present

Ala. thnun Y2SaiGXi>/ is again equal to a.i W.p.1. To
S. n ,J

.' - 'I .I

*1n
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see this, note that since S is in HN w.p. 1, <S,e> 2/ . is finite.
N1

" 1 n 2 1n
This implies that both -7 <S,e.> 2/. and - <S,e.><a.G,e.>/X.

n 1 j n J J J ,

converge to zero w.p. 1.

The preceding shows that 1a 0 [C(ai)] = 1 and that CaG[C(ai)] = 0
1 J

- for igj. Thus,

PS+N (B) = 2 p, f [dWs+a.G/d"a.G](x) d4a.G(x)
BfC(ai) 1 1 1

= 2 S [dsL a/da .G](x) d AN(X)
i BfC(ai) S+a

because PN(BnC(ai)) = P.iLG(BnC(ai)). (4-1) now follows by the
1

monotone convergence theorem.
0

The expression for the likelihood ratio given in (4-1) partitions

the Borel u-field of L2 [O,T] into two major subsets. These sets are
i n

UC(a and its complement, where C(a) x: lim - n <x,e.>2/X.

•in n j= l J J

2
a.}. It is noteworthy that the likelihood ratio does not involve the

1

probabilities P{A=ai}. These facts show first that the important

factor in determining the likelihood ratio for detection in

- continuous-time SIN is knowledge of the values which can be assumed by

the mixing random variable A. However, no penalty is assessed if one

includes too many possible values of A. That is, if b is not a
1n 2 b 2

possible value of A, then the set C(b) = {x: lim - I <x,e>2/X 2
n j=l

has zero N-probability, and so addition of the term

Icb)X)[dp s+bG/dpb%](x) to (4-1) will not affect (with probability

one) performance of the test statistic.

A particular application of the above is the situation when the

noise can be either Gaussian or spherically-invariant nonGaussian. If

P[A=I] > 0 holds for the mixing r.v. in the nonGaussian case, then the

likelihood ratio (4-1) will still be a likelihood ratio if the noise

is in fact Gaussian. If P[A=l] = 0 for the nonGaussian SIN model, then

dS+G

one can add the term Ic(1)(x) d (x) to the likelihood ratio (4-1).

The resulting sum will be a likelihood ratio when either hypothesis is

true.
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In the remainder of this section, attention will be restricted to

the problem of detecting a known signal S in additive SIN. In the case

of Gaussian noise, it is well known that the likelihood ratio exists

(non-singular detection) if and only if S is in range(R'). The same

result holds if the noise is any SIN process.

Prop. 4.2. If S is a fixed element in 2 [O,T], then either PSN ±

or else p S+N << 4N and W N < S+N" Mutual absolute continuity holds if

and only if S is in range(R N).

Proof. If the L2 [OT] equivalence class generated by S is not in

range(RN), then pS+aG a for each a., using the known results for
1 1

the Gaussian case. As shown in the proof of Prop. 4.1 (and well-known

* [14]). G P 1a.G for ipj. Moreover, pS-a.G I Pa.G for j~i, since

range(R') = range (a2R +a2R )2 and S must belong to this latter range

space in order to have mutual absolute continuity of p and pa.G
1 G3

K
[14]. Thus I P for all i and j, so that p+ G I A

1 .3 1 j=l
K K

for i=l......K. This gives 2 Pi S+a.G p t P ia.G' or 'S+N "
i=l i j=l a j

Conversely, if S is in range(R2), p for i=l.....K. so•_ ' ~~N S+a.G P a•G fo i l. . . ,s
1 1

that

K K

i=l i S+a G j=l a j 0

Performance of the likelihood ratio (4-1) can be computed for the

case of a known signal. When the noise is Gaussian, then it is

well-known that the performance depends only on

2 2 2
d = ISIN 2 <S,e > /XNn n

n>l

where {An , n>l} and {e , n>l} are the eigenvalues and associated
n -n -

4 c.o.n. eigenvectors of the noise covariance operator RN.
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0 Prop. 4-3. Suppose that the signal is a known function S belonging to

range(RI), and that P[A=a] =P, > 0, i01. Then performance of a

._*. likelihood ratio test statistic is given by

P -m p P[Z > ka. + d/(2a (4-2)
FA - P P[Z2a ka

P = P p. P[Z > ka. - d/(2ai)] (4-3)
D . - 1

-. where Z is distributed N(O 1) and k is a constant whose value is

determined by the desired value of P FA*

Proof: For k > 0.

'FA :N(x: (dIS+N/d N)(x) e } = gN{X: Y 'C(a (x)ei(x) kd}

where

I r 1 2 d/2l
" ei(x) =log[(ds+a.G /dp a.()(x)] =2 2[1 <xe ><S e >/Xn

1 1 a. n

Thus

PFA ( i aG x :  (x) > kd}
FA 2P2 d2/2

{2 P pGx: a.2 <x,e ><S~e >/X ) kda2 + d /2).
i in n n n - 1

Since the random variable e defined by

P(x) = .<x.e ><Se >/X
n n n n

2
is Gaussian with respect to p., and has mean zero and variance d

P = .
i Pi P[Z > ka. + d/(2a 01

P is calculated in the same way.
D

As can be seen from (4-2) and (4-3). detection performance

depends on d and also on the distribution of the mixing random

variable A.

* The likelihood ratio as given in (4-1) requires prior knowledge

of the values (a,) that can be assumed by the mixing random variable

A. However, this prior knowledge is not necessary in order to

implement this detector.

Prop. 4-4I. For a known signal S. a likelihood ratio test is to decide

" signal present if and only if

. . .2 2 2-
[e(x)/A (x) -d /(2A(] k (4-4)

.7. .*
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where k is determined from (4-2) and (4-3), and

-2 1 n2A (x) lim- (xe > /X
n n ' k

-2 2
Proof. If x E C(ai), then A (x) = a. with probability one under pN or

as shown in the proof of Prop. 4-1. The result then follows

directly from the expression (4-1), or by examining the proof of Prop.

4-3.

A likelihood ratio detector can thus be implemented without any

prior knowledge of the distribution of the mixing random variable A,

provided the noise is in fact SIN. However, as can be seen from the

expressions (4-2) and (4-3) for PFA and PD' likelihood ratio detection

performance depends on the complete distribution of A. This means that

it is not possible to set a threshold for a specified PFA unless one

has complete knowledge of the distribution of A.

This leads one to consider the problem of CFAP (constant false

alarm probability) detection, which has been treated for many years by

designers of active sonar detection systems. In this traditional

context, the detection problem is that o f detecting a signal in

Caussian noise which is known except for a scale factor. It is desired

to have the same probability of false alarm for any value of the scale

factor. The scale factor has usually been treated as an unknown

parameter, rather than as a random variable.

A CFAP detector can be obtained for the SIN detection problem by

-" -"using the following decision procedure:

decide signal present if and only if

'O4 P(x)/A(x) > kd, (1-5)

when A(x) = [A (x) When noise only is present, P(x)/A(x) = P(x)/a.

*-- with probability one when x = a.G. Since then R(x) aiP(G). one has

2
that P(x)/A(x) is Gaussian with zero mean and variance d and

PFA = P[Z > k]. (4-6).

When this detection algorithm is used, and x = S + a.G, then e(x)/a.
2 2

is Gaussian with mean d2 /a i and variance d2  so that

)P : Pi P[Z > k - d/a.]-'
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The difference in performance between the optimum detector (4-4)

and the CFAP detector (4-5) will depend on the distribution of A.

Figure 1 shows an example using a distribution for A obtained from

analyzing under-ice sonar data. The curves show performance for the

optimum detector (4-4). the CFAP detector (4-5). and the matched

filter (A=l w.p. 1) when the noise is SIN with the given distribution

for A. Also shown is the performance that one would obtain using the

matched filter if the noise were truly Gaussian. The difference in

performance of the matched filter and the likelihood ratio illustrates

the significant performance loss that can occur if the noise is mis-

takenly assumed to be Gaussian. This and the similarity in perfor-

mance of the CFAP detector and the likelihood ratio illustrate the

wisdom of using a CFAP detector if there is a possibility that the

noise is SIN with unknown distribution.

|.I.0

LIKELIHOOD
RATIOA

CFAP DETECTOR

MATCHED
.6 FILTER DistributionofA

-- (G AU SS// NOISE) ___Pi

I .65 39651
2.086. .1003

5.4 8.0 .0032
:.- MATCHED

FILTER d =4

• .2-

S10-5 10-4 10-3 10-2 10-1 PFA

4. ,- . .. . . , -_. , .,. ...- - . .. :.... . .. .. :.: .,...s:.._.,....,. .- ... . .*. .-n:

I
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For the discrete-time finite-sample detection problem, with ob-

servation x in En, the likelihood ratio dPn /dP is easily seen to be
SN N

N/dPN (x) PdP (x)/ pdP (x)
Ld sil -1-

d +N/d N 2pi S+a.G(0. - ,jd aG 00 (4-8)

where dP n is the multivariate density function for the probability pf

on En. In contrast to the continuous-time case (4-1), the

probabilities pi = P[A=ai] appear in (4-8). Moreover, the likelihood

ratio (4-1) produces a non-zero value (with probability one) only if

the observation involves a.G for a. one of the terms included in
1 1

(1t-1); otherwise, the value of the likelihood ratio is zero. This is

not true in the discrete-time case of (4-8). In the case of a known

signal S, the performance (PFA and P of (4-1) depends only on the

d2  HR S2
distribution of A and on d HR 2S11 The discrete-time detector's

performance improves as the sample size n increases, with d fixed.

iThese differences can all be understood by examining the form of

-1-S) as the sample size increases.

Suppose that noise only is present, and that the mixing r.v. A

on the value a., so that the received waveform x is a.G with C

mitltivariate Gaussian, zero mean, non-singular covariance matrix R.

Let Y n p dpn (I ) = log pj - n log a. - .11R- .II 2 /(2a ) + C
J1 aJC j -

2 n
- log p - n log a. a. V /(2a + C

where C is a constant and (Vk) is i.i.d. N(O,1). It will be shown that

Y -_ -Y w.p. 1. Thus,

• .- lo[p -a n 2[( a~2)l
l o. = [p/p] n log [a /a.] k V -r.. -k=l

2Ow -,= - npu.., + f3( u.

+ 1 n i,j
where 2 is chi-square with n degrees of freedom, [3 = j3(ij)

n
2 2

I( -;I /a .)/21 f) . P ( i .j) = I log (a /a ,) . r(i J) = log p /p

-ind ,i = 1 if a. a. u. -1 if a. > a..1 1. . 1 1 , j j

-or a. < a.. m > 0, x = a.C. one has p[yn. - yn. > -i]

m n 2
P[p.dP (x) e Pm n P[\n > -(m+-y)// + np/fi]

J a.C -(n - "

SI Since X /n - 1 w.p. I as n and p/13 > I for a. a.,n .2

. . .. . . . . . . . . . . .. . .. . . . . . . . . . . . . . . . . . . . . . .
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P[lim ( 2 /n +(m+7)/Pn - p/p) 0 0] = 0, for any fixed m > 0.
n n

pn yn m C2
If a i > a. , then P[Y. - Y. -i] = Pnc < (m+-Y)/p + np/]. In

2
this case. p/P < 1, so P[lim nk/n -(m+7)/Pn - p/1) 0] =0.

Using these expressions, one can obtain the value of n required

for a specified approximation, once the distribution of A is known.

The value of n required for P[p dP aG() > e Pid Pa.G(x)] < a when
L. j a.
x = a.G is determined from

2P[n -(m+7)/ + npI13] < a if a. < a.
PIn 1.

(4-9)

P[X < (m+7)/p + np/] < a if a. > a..

This procedure can be repeated for the numerator of (4-8). A

conservative result, which satisfies

EP[p dPS+a G(x) > e Pi dPS+G(X)] a, is to require n An + n1 ,

where n1 is the value for a given by (4-9) and An satisfies

.np(i~j)/(ij) dZ /a. + d2u(i j)/(2a.2) (4-10)An )/a i "

Applying these results to the distribution used to obtain Figure

-m -3
1, with e = .01 (m = 4.6) and a = 10 , the required sample size for

the denominator of (4-8) is n 21. using (4-9). The value of An

given by (4-10) is 9, so that an adequate sample size is 30. This

rather small required sample size is a result of the wide separation

between the three values of A, and (to a much lesser extent) the

corresponding large differences in their probabilities. It can be

seen from (4-9) and (4-10) that distributions for A which have more
V similar values will require larger sample sizes in order to achieve

the above bounds, with a requirement of n - m as the minimum distance

between A values converges to zero.

The gist of this analysis is that the likelihood ratio (4-8)

converges to dP /dP when x = aiG, as the sample size increases;
S+a. a -

the rate of convergence depends on the distance from a i to the nearest

value of A not equal to ai; and the probability ratios can be ignored

for large sample size. When the sample size n is sufficiently large to

assume equality in this approximation, then the performance of the

discrete-time detector is the same as that of the continuous-time

2
detector so long as the value of d is fixed.

* For n sufficiently large, then, one can mimic the log-likelihood

".. ,.. ,.. .-, " __. ,• , "., -. -, -, ,.':- "-. %" ," °.;-" %..,....-..,-.."...-.,...".. ......'".".,"......'..........."....,,.',.....".. '.'.,...".. . . .. "'.,'.". .".... .
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ratio for the continuous-time case:

[dPs N/dPN](x) (x)/A(x) - d /2A(x) (4-11)
2-1 N2/ k

where A (x) n 1 ( k2 /Xk'
k=l

n
-n(x) (

k=l

Rek= Xkek' k=l......n, and
, E n

{Lk' k>l} is a complete orthonormal set in E.

The detector (4-11) has previously been given as an approximate

likelihood ratio for large n by Picinbono and Vezzosi [13]. The above

analysis indicates why this is so, and indicates how one can determine

how large n must be in order to use the approximation.

The CFAP detector now becomes

ACFAP(2) = e (n)/A n(x) (4-12)

where An(x) = [Ai()]2n" n

- For small n, one may wish to consider the CFAP detector given by

ACFAP(x) =n (?)/n(x) (4-13)

2 -1n 1~~e n (2Lwe)] 2

where 2a) = (n-1)- I k Since the randomn i=l X n j=l A 2

variables {xe./ .: i=l.....n} are i.i.d. N(Oa 2) when A=a. and en(x)

is Gaussian, one may wish to assume that S.e./A. = constant = d/Vn
--l-1 1

for i=l......n. The test statistic divided by d then has a t

distribution with n-i degrees of freedom when noise only is present;

this fact can be used to calculate P Under this same assumption,
FA'

one can also obtain an expression for P for this detector if the
D 2

distribution of A is known, using the fact that (n - 1)2 is
*n

chi-square distributed with n - 1 degrees of freedom. One could use

these considerations to determine a worst-case value of PD if the
distribution of A is known to belong to a specified family, while

maintaining a desired P
SFA'

The problem of detecting a signal in Gaussian noise having

unknown scale factor is familiar in active sonar. A detailed treatment

of CFAP detection for this problem has been given by Grieve [7], who

obtained CFAP optimality properties for (4-12).
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5. APPLICATIONS TO DETECTION IN IMPULSIVE NOISE ENVIRONMENTS

As previously noted, Middleton's Class A univariate model is a

special case of SIN. Detection in such noise has been analysed by

several approaches. In [16], Spaulding and Middleton assume

independent sampling and then develop bounds on likelihood ratio

performance for communicating with a known signal over a channel in

the presence of Class A noise. The Middleton model has also often been

approximated by using only the first two or three terms: "Gauss-Gauss"

or "Gauss-Gauss-Gauss" noise.

If the mixing random variable of the Middleton model remains

constant over the observation interval, then the results given above

can be used to provide detection results. It is not necessary to have

independent sampling, but only to know the covariance matrix of the

noise and the parameters U and F. For detection of a known signal, the

preceding results can be used in several ways. They provide upper

bounds on detection performance by giving the continuous-time

detection performance. Secondly, they provide a method for obtaining

exact detection performance for the discrete-time finite-sample-size

detectors, and provide a means of calculating required sample size in

order to simplify the detector structure. Thirdly, they can be used to

obtain discrete-time CFAP detectors, as well as upper bounds on the

performance of such detectors. Finally, the fact that the likelihood

ratio detector can be implemented without knowing the distribution of

the mixing r.v. A, once the sample size n is reasonably large (4-11),

can provide a significant reduction of the complexity of the

implementation. One need only adjust the threshold as a function of

the parameters U and F, while the operation on the data is unchanged.

Even this adjustment is not necessary if one is willing to use a CFAP

detector.

*- The imbedding of the Middleton Class A model within the general

SIN model thus provides a number of useful results. One may note the0
importance of the continuous-time model, which is often disregarded on

the grounds that it is not relevant to practical signal detection. In

the present case, the continuous-time model provides useful upper

bounds on detection performance for both the likelihood ratio detector

and the CFAP detectors. It also provides one with a practically-useful

implementation and simplification of the apparently extremely-compli-

cated discrete-time likelihood ratio detectors, and a rationale for

making this simplification. The notion of orthogonal measures is

central to these results.

-1' If.. .L,"-' A -A-,. A,
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6. EXTENSIONS TO THE SIN MODEL

The SIN model is not realistic for many situations, such as

observation periods where the mixing r.v. A cannot be expected to take

on a constant value. A more reasonable model in such situations would

be generalized spherically-invariant noise, of the form

N(t) = A(t)G(t), where now (A(t)) is a stochastic process independent

of the Gaussian process (G(t)). This reduces to a SIN model in the

univariate case. Some work has previously been done for such a model

[15]. but general results are so far not available.
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